SPECIFICATION FOR APPROVAL

()	Preliminary	Specification
---	---	-------------	---------------

() Final Specification

Title		10	6.4" WHD+ TFT I	_CD
		7		
Customer	SONY		SUPPLIER	LG Display Co., Ltd.

Customer	SONY
MODEL	

SUPPLIER	LG Display Co., Ltd.
*MODEL	LP164WD1
Suffix	TLA1

^{*}When you obtain standard approval, please use the above model name without suffix

	APPROVED BY	SIGNATURE			
	1				
	1				
Please return 1 copy for your confirmation with your signature and comments.					

APPROVED BY	SIGNATURE	
K. S. Kwon / S.Manager	(A) is. 10. 17	
REVIEWED BY		
C. I. Kim / Manager	12/20/ 68.10/1	<i>'</i>)
PREPARED BY		
J. W. Kim / Engineer	26-83 '08.10.17	忧
B. D. Jun / Engineer	26 637 '08.10.17)	
Products Engineeri LG Display Co.,	• .	

Contents

No	ITEM		
	COVER	1	
	CONTENTS	2	
	RECORD OF REVISIONS	3	
1	GENERAL DESCRIPTION	4	
2	ABSOLUTE MAXIMUM RATINGS	5	
3	ELECTRICAL SPECIFICATIONS		
3-1	ELECTRICAL CHARACTREISTICS	6	
3-2	INTERFACE CONNECTIONS	8	
3-3	LVDS SIGNAL TIMING SPECIFICATIONS	9	
3-4	SIGNAL TIMING SPECIFICATIONS	11	
3-5	SIGNAL TIMING WAVEFORMS	11	
3-6	COLOR INPUT DATA REFERNECE	12	
3-7	POWER SEQUENCE	13	
4	OPTICAL SFECIFICATIONS	14	
5	MECHANICAL CHARACTERISTICS	18	
6	RELIABLITY	25	
7	INTERNATIONAL STANDARDS		
7-1	SAFETY	26	
7-2	EMC	26	
8	PACKING		
8-1	Packing Ass'y	27	
8-2	Pallet Ass'y	28	
8-3	DESIGNATION OF LOT MARK	29	
9	PRECAUTIONS	30	

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	EDID ver
0.0	July. 14, 2008	-	First Draft (Preliminary Specification)	0.0
0.1	Sep. 04, 2008	4	Add Surface Treatment (Reflection rate)	-
		8	Change Lamp Cable color (High voltage) : White \rightarrow Blue	
		11	Add a Max. and Min. Dclk value	
		14	Add a RGB Color Coordinates	
		15	Add a Gamma Value	
		19	Change Lamp wire Length : 120mm → 100mm	
		32~34	Remove a EDID Data	
1.0	Oct. 17, 2008	-	Final Draft	-



1. General Description

The LP164WD1 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp (CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 16.4 inches diagonally measured active display area with HD+ resolution(900 vertical by 1600 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP164WD1 has been designed to apply the interface method that enables low power, high speed, low FMI.

The LP164WD1 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP164WD1 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	16.4 inches diagonal
Outline Dimension	375.0(H, typ) × 219.1(V, typ) × 6.5(D,max) [mm]
Pixel Pitch	0.2265mm × 0.2265 mm
Pixel Format	1600 horiz. By 900 vert. Pixels RGB strip arrangement
Color Depth	6-bit, 262,144 colors
Luminance, White	200 cd/m²(Typ.5 point)
Power Consumption	Total 6.3 Watt(Typ.) @ LCM circuit 1.5 Watt(Typ.), B/L input 4.8 Watt(Typ.)
Weight	625g (Max.)
Display Operating Mode	Transmissive mode, normally white
Surface Treatment	Hard Coating(3H), Surface Reflection rate(<5%), Glare treatment of the front polarizer
RoHS Comply	Yes

2. Absolute Maximum Ratings

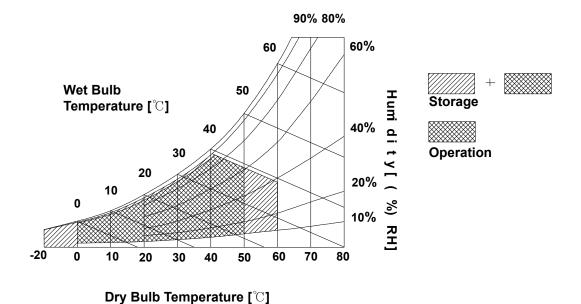

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

		Values			
Parameter	Symbol	Min -0.3	Max 4.0	Units	Notes
Operating Temperature	Тор	0	50	° C	1
Storage Temperature	Hst	-20	60	° C	1
Operating Ambient Humidity	Нор	10	90	%RH	1
Storage Humidity Note: 1. Temperature and relative	HST Shumidity ran	10	90	%RH	1

te:1. Temperature and relative numidity range are snown in the tigure below.

Wet bulb temperature should be 39° C Max, and no condensation of water.

Note : 2. Not showing abnormal scanner operation when turning on LCM after 30minutes of storage at -10 $^{\circ}$ C.

Ver. 1.0 Oct. 17, 2008 5 / 2.1

3. Electrical Specifications

3-1. Electrical Characteristics

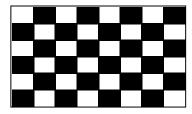

The LP164WD1 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCD.

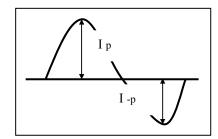
Table 2. ELECTRICAL CHARACTERISTICS

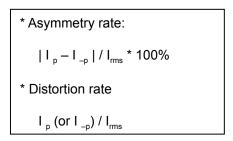
Darameter	Cumbal	Values			Linit	Notes
Parameter	Symbol	Min	Тур	Max	Unit	Notes
MODULE :						
Power Supply Input Voltage	VCC	3.0	3.3	3.6	V_{DC}	
Power Supply Input Current	I _{cc}	-	455	515	mA	1
Power Consumption	Pc	-	1.5	1.7	Watt	1
Differential Impedance	Zm	90	100	110	Ohm	2
LAMP:						
Operating Voltage	$V_{\scriptscriptstyle BL}$	700(7.0mA)	745(6.0mA)	970(2.0mA)	V_{RMS}	
Operating Current	I _{BL}	2.0	6.0	7.0	mA_{RMS}	3
Power Consumption	P_{BL}	-	4.5	4.9		
Operating Frequency	$f_{\scriptscriptstyle{BL}}$	45	60	80	kHz	
Discharge Stabilization Time	Ts	-	-	3	Min	4
Life Time		15,000	-	-	Hrs	5
Established Starting Voltage at 25℃ at 0 ℃	Vs			1200 1440	V_{RMS}	

Note)

1. The specified current and power consumption are under the Vcc = 3.3V , 25 °C, fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency.

- 2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 3. The inrush current is measured under a maximum or minimum Vcc in black pattern.
- 4. The typical operating current is for the typical surface luminance (L_{WH}) in optical characteristics.
- 5. Define the brightness of the lamp after being lighted for 5 minutes as 100%, Ts is the time required for the brightness of the center of the lamp to be not less than 95%.
- 6. The life time is determined as the time at which brightness of lamp is 50% compare to that of initial value at the typical lamp current.

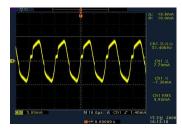

Ver. 1.0 Oct. 17, 2008



Note)

- 6. The output of the inverter must have symmetrical(negative and positive) voltage waveform and symmetrical current waveform.(Asymmetrical ratio is less than 10%) Please do not use the inverter which has asymmetrical voltage and asymmetrical current and spike wave.
 Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.
 - 7. It is defined the brightness of the lamp after being lighted for 5 minutes as 100%.


 T_s is the time required for the brightness of the center of the lamp to be not less than 95%.
 - 8. The lamp power consumption shown above does not include loss of external inverter. The applied lamp current is a typical one.
 - Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp, are following.
 It shall help increase the lamp lifetime and reduce leakage current.
 - a. The asymmetry rate of the inverter waveform should be less than 10%.
 - b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$.
 - * Inverter output waveform had better be more similar to ideal sine wave.



- Inverter open voltage must be more than lamp voltage for more than 1 second for start-up.
 Otherwise, the lamps may not be turned on.
 - Do not attach a conducting tape to lamp connecting wire.
 If the lamp wire attach to a conducting tape, TFT-LCD Module has a low luminance and the inverter has abnormal action. Because leakage current is occurred between lamp wire and conducting tape.

Ex of current wave)

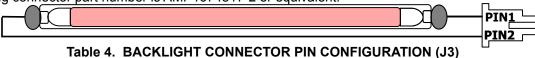
Normal current wave - Standard

Abnormal current wave - Bad

Abnormal current wave - Bad

Abnormal current wave - Bad

3-2. Interface Connections

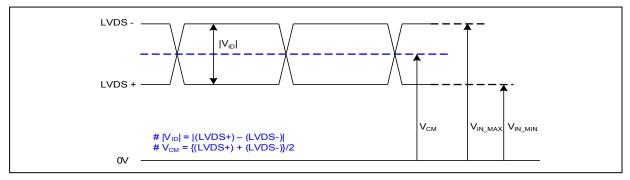

This LCD employs two interface connections, a 30 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

The electronics interface connector is a model FI-XB30SRL-HF11 manufactured by JAE.

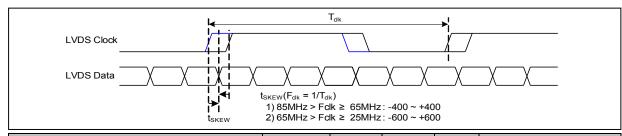
Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin	Symbol	Description	Notes
1	GND	Ground	
2	VCC	Power Supply, 3.3V Typ.	
3	VCC	Power Supply, 3.3V Typ.	
4	V EEDID	DDC 3.3V power	1, Interface chips
5	NC	No Connection	1.1 LCD: SW, SW0617 (LCD Controller) including LVDS Receiver
6	CIk EEDID	DDC Clock	1.2 System : THC63LVDF823A
7	DATA EEDID	DDC Data	or equivalent
8	Odd_R _{IN} 0-	Negative LVDS differential data input	* Pin to Pin compatible with LVDS
9	Odd_R _{IN} 0+	Positive LVDS differential data input	2. Connector
10	GND	Ground	2.1 LCD :FI-XB30SRL-HF11 ,JAE or its compatibles
11	Odd_R _{IN} 1-	Negative LVDS differential data input	2.2 Mating: FI-X30M or equivalent.
12	Odd_R _{IN} 1+	Positive LVDS differential data input	2.3 Connector pin arrangement
13	GND	Ground	
14	Odd_R _{IN} 2-	Negative LVDS differential data input	30 1
15	Odd_R _{IN} 2+	Positive LVDS differential data input]
16	GND	Ground	
17	Odd_CLKIN-	Negative LVDS differential clock input	II CD Modulo Boor Viowi
18	Odd_CLKIN+	Positive LVDS differential clock input	[LCD Module Rear View]
19	GND	Ground	
20	Even_R _{IN} 0-	Negative LVDS differential data input	
21	Even _R _{IN} 0+	Positive LVDS differential data input	
22	GND	Ground	
23	Even _R _{IN} 1-	Negative LVDS differential data input	
24	Even _R _{IN} 1+	Positive LVDS differential data input	
25	GND	Ground	
26	Even _R _{IN} 2-	Negative LVDS differential data input	
27	Even _R _{IN} 2+	Positive LVDS differential data input	
28	GND	Ground	
29	Even _CLKIN-	Negative LVDS differential clock input	
Th e ba	ckight@Mac	PositivnedotBp isiternnoideിയിലെയും 02VS-1, manufa	ctured by JST or Compatible.

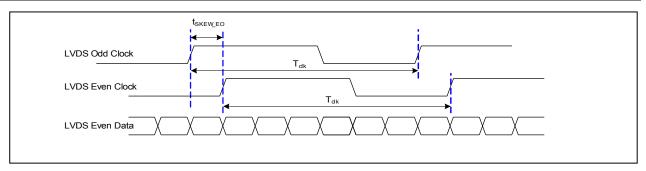
The mating connector part number is AMP1674817-2 or equivalent.


Pin	Symbol	Description	Notes
1	HV	Power supply for lamp (High voltage side)	1
2	LV	Power supply for lamp (Low voltage side)	1

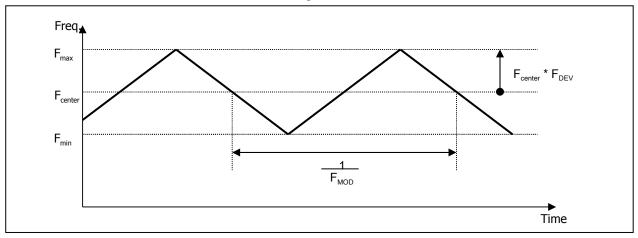
Notes: 1. The high voltage side terminal is colored Blue and the low voltage side terminal is Black.


3-3. LVDS Signal Timing Specifications

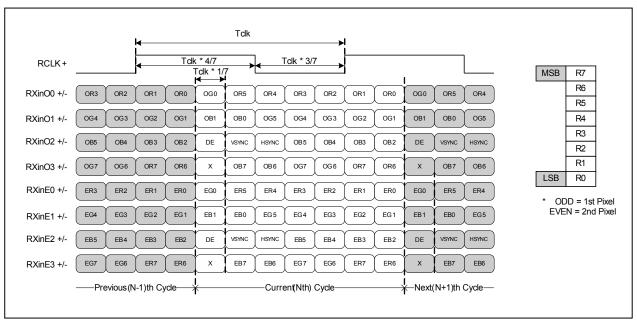
3-3-1. DC Specification


Description	Symb ol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	100	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-

3-3-2. AC Specification



Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skow Margin	t _{skew}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz
LVDS Clock to Data Skew Margin	t _{skew}	- 600	+ 600	ps	65MHz > Fclk ≥ 25MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{skew_eo}	- 1/7	+ 1/7	T _{clk}	-
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-


< Clock skew margin between channel >

< Spread Spectrum >

3-3-3. Data Format

1) LVDS 2 Port

< LVDS Data Format >

3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 6. TIMING TABLE

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Frequency	f_{CLK}	47.375	48.875	50.375	MHz	1port : fCLK * 2
	Period	t _{HP}	862	880	898		
Hsync	Width	t _{wH}	12	16	20	tCLK	1port : Hsync *2
	Width-Active	t _{wha}	800	800	800		
	Period	t _{vP}	916	926	935		
Vsync	Width	t _{wv}	3	5	8	tVP	
	Width-Active	t _{wva}	900	900	900		
	Horizontal back porch	t _{HBP}	32	40	48	+CI V	1 nort : Horizontal novel * 2
Data	Horizontal front porch	t _{HFP}	18	24	30	tCLK	1port : Horizontal porch * 2
Enable	Vertical back porch	$t_{\scriptscriptstyle{VBP}}$	11	18	22	#UD	
	Vertical front porch	t_{VFP}	2	3	5	tHP	

3-5. Signal Timing Waveforms

High: 0.7VCC Data Enable, Hsync, Vsync Low: 0.3VCC 0.5 Vcc **DCLK** \mathbf{t}_{HP} Hsync **t**WHA t_{HFP} t_{HBP} Data Enable t_{VP} Vsync t_{VFP} $\mathbf{t}_{_{\text{VBP}}}$ twva Data Enable

Condition: VCC =3.3V

3-6. Color Input Data Reference

The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

			Input Color Data					
	Color	RED	GREEN	BLUE				
'	20101	MSB LSB	MSB LSB	MSB LSB				
		R5 R4 R3 R2 R1 R0	G5 G4 G3 G2 G1 G0	B5 B4 B3 B2 B1 B0				
	Black	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0				
	Red	111111	0 0 0 0 0 0	0 0 0 0 0 0				
	Green	0 0 0 0 0 0	1 1 1 1 1 1	0 0 0 0 0 0				
Basic	Blue	0 0 0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 1				
Color	Cyan	0 0 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1 1				
	Magenta	1 1 1 1 1 1	0 0 0 0 0 0	1 1 1 1 1 1				
	Yellow	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0				
	White	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1				
	RED (00)	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0				
	RED (01)	0 0 0 0 0 1	0 0 0 0 0 0	0 0 0 0 0 0				
RED								
	RED (62)	1 1 1 1 1 0	0 0 0 0 0 0	0 0 0 0 0 0				
	RED (63)	111111	0 0 0 0 0 0	0 0 0 0 0 0				
	GREEN (00)	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0				
	GREEN (01)	0 0 0 0 0 0	0 0 0 0 0 1	0 0 0 0 0 0				
GREEN								
	GREEN (62)	0 0 0 0 0 0	1 1 1 1 1 0	0 0 0 0 0 0				
	GREEN (63)	0 0 0 0 0 0	1 1 1 1 1 1	0 0 0 0 0 0				
	BLUE (00)	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0				
	BLUE (01)	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 1				
BLUE								
	BLUE (62)	0 0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 0				
	BLUE (63)	0 0 0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 1				

3-7. Power Sequence

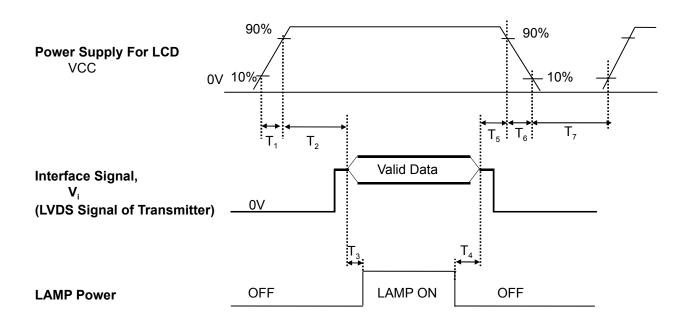


Table 8. POWER SEQUENCE TABLE

Parameter		Value	Units	
	Min.	Тур.	Max.	
T ₁	0	-	10	(ms)
T ₂	0	-	50	(ms)
T ₃	200	-	-	(ms)
T ₄	200	-	-	(ms)
T ₅	0	-	50	(ms)
T ₆	3	-	10	(ms)
T ₇	400	-	-	(ms)

Note)

- 1. Valid Data is Data to meet "3-3. LVDS Signal Timing Specifications"
- 2. Please avoid floating state of interface signal at invalid period.
- 3. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
- 4. Lamp power must be turn on after power supply for LCD and interface signal are valid.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25° C. The values specified are at an approximate distance 50cm from the LCD surface

at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

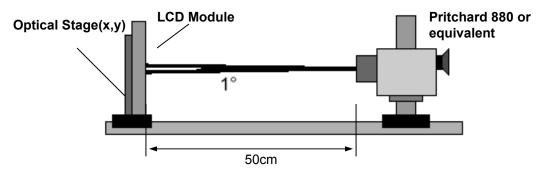


Table 9. OPTICAL CHARACTERISTICS

Ta=25° C, VCC=3.3V, f_{V} =60Hz, f_{CLK} = 48.875MHz, F_{BL} = 60KHz , I_{BL} = 6.0mA

Parameter		Symbol		Values		Units	Notes
	-arameter	Syllibol	Min	Тур	Max	Units	notes
Contrast Ratio)	CR	400	600	-		1
Surface Lumir	nance, white	L_WH	170	200	-	cd/m²	2
Luminance Va	ariation	δ_{WHITE}	-	1.4	1.6		3
Response Tim	ne						4
	(Rise time)	Tr_R	-	5.5	9	ms	
	(Delay time)	Tr_{D}	-	10.5	16	ms	
Color Coordin	ates						
	RED	RX	0.564	0.594	0.624		
		RY	0.317	0.347	0.377		
	GREEN	GX	0.299	0.329	0.359		
		GY	0.516	0.546	0.576		
	BLUE	BX	0.126	0.156	0.186		
		BY	0.106	0.136	0.166		
	WHITE	WX	0.283	0.313	0.343		
		WY	0.299	0.329	0.359		
Viewing Angle	;						5
	x axis, right(⊕=0°)	Ø	40	45	-	degree	
	x axis, left (Φ=180°)	Ф	40	45	-	degree	
_	y axis, up (Φ=90°)	æ	15	20	-	degree	
	y axis, down (Ф=270°)	Ø	35	40	-	degree	
Gray Scale			Oct. 17. 2	2.2	-		6

Note)

6.

1. Contrast Ratio(CR) is defined mathematically as

Surface Luminance with all white pixels

Contrast Ratio =

Surface Luminance with all black pixels

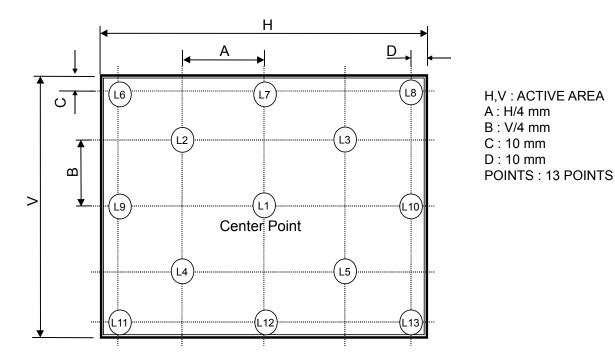
2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1.

$$L_{WH} = Average(L_1, L_2, ... L_5)$$

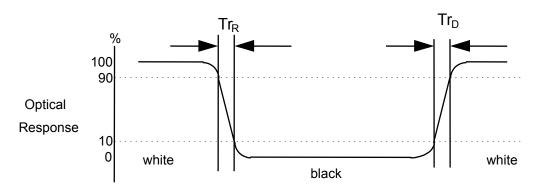
3. The variation in surface luminance , The panel total variation (δ_{WHITE}) is determined by measuring L_N at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2.

$$\delta_{\text{WHITE}} = \frac{\text{Maximum}(L_1, L_2, \dots L_{13})}{\text{Minimum}(L_1, L_2, \dots L_{13})}$$

- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.


Luminance [%] (Typ)
0.1
1.8
6.3
12.6
21.0
33.6
51.8
74.6
100

15 / 31


FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time

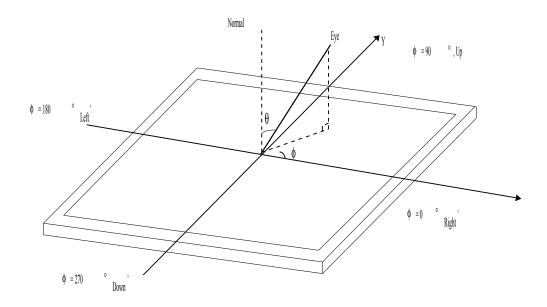
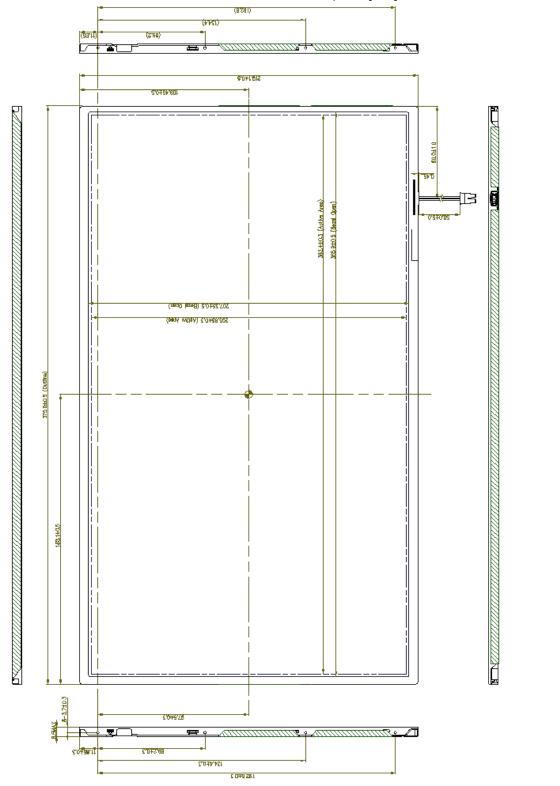

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

FIG. 4 Viewing angle

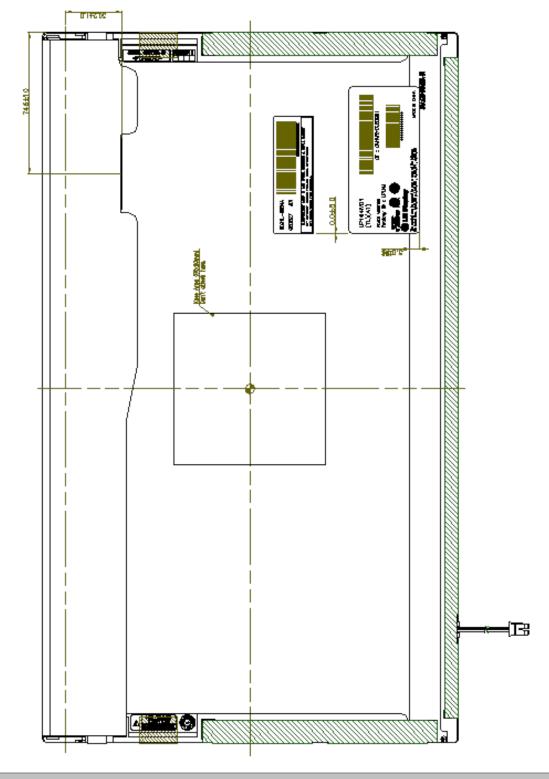
<Dimension of viewing angle range>

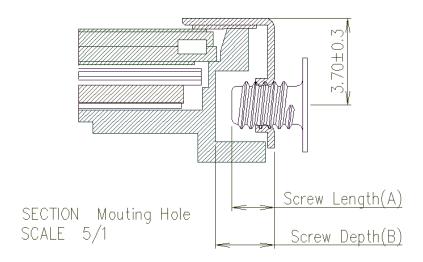
5. Mechanical Characteristics


The contents provide general mechanical characteristics for the model LP164WD1. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	375.0 ± 0.5mm	
Outline Dimension	Vertical	219.1 ± 0.5mm	
	Thickness	6.5mm (max)	
Bezel Area	Horizontal	365.9 ± 0.5mm	
	Vertical	207.35 ± 0.5mm	
Active Display Area	Horizontal	362.4 mm	
Active Display Area	Vertical	203.85 mm	
Weight	625g (Max.)		
Surface Treatment	Hard Coating(3H), Glare treatment of the front polarizer		

<FRONT VIEW>

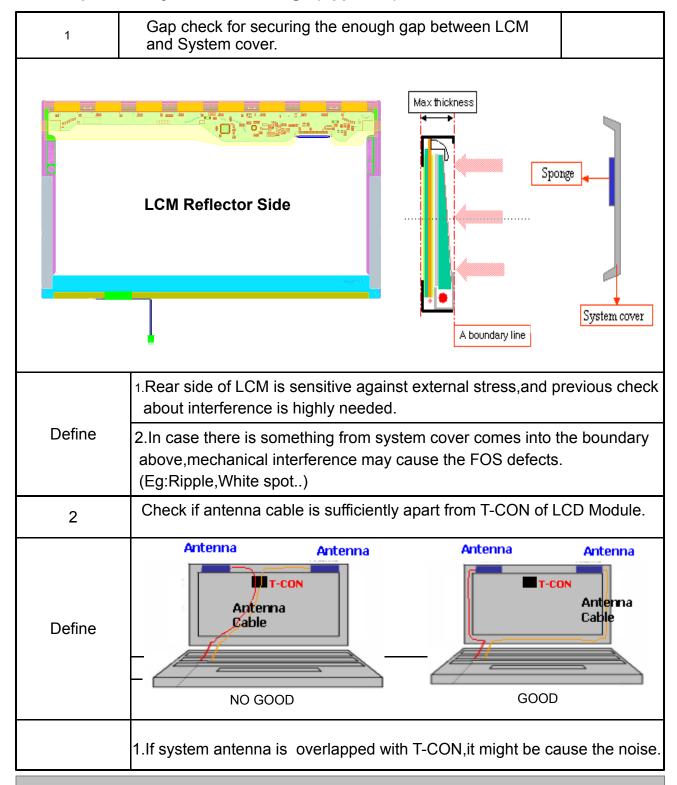

Note) Unit:[mm], General tolerance: ± 0.5mm


<REAR VIEW>

Note) Unit:[mm], General tolerance: ± 0.5mm

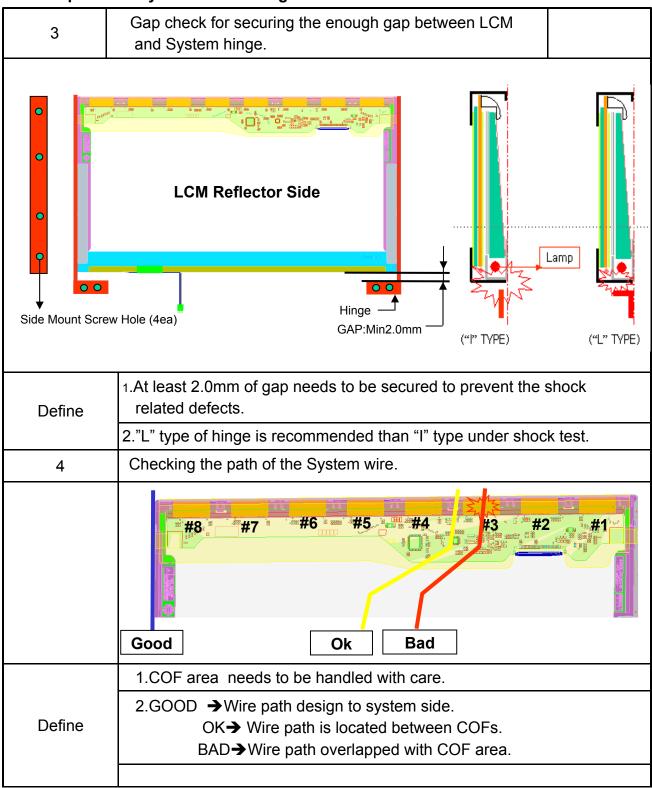
[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]

- * Mounting Screw Length (A) = 2.0(Min) / 2.5(Max)
- * Mounting Screw Hole Depth (B) = 2.5(Min)
- * Mounting hole location : 3.70(typ.)
- * Torque : 2.0 kgf.cm(Max)

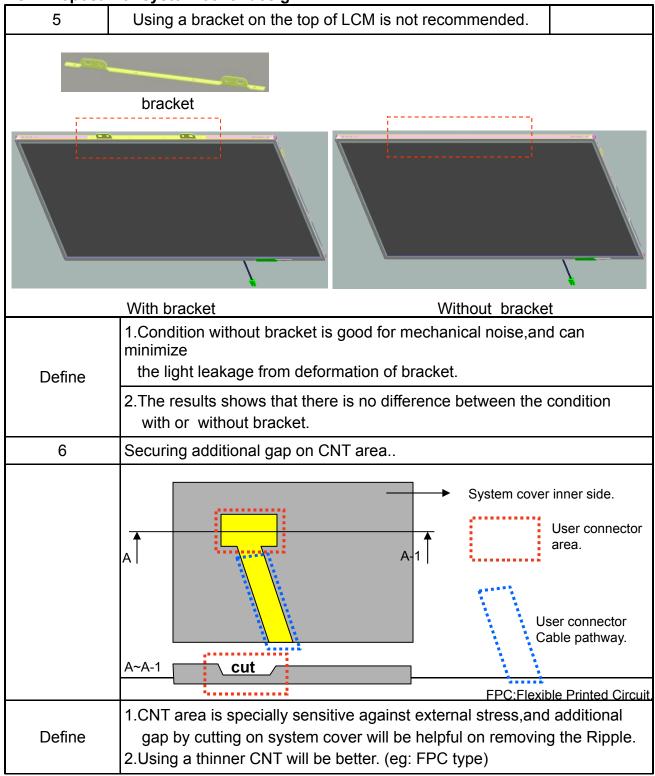

(Measurement gauge : torque meter)

Notes: 1. Screw plated through the method of non-electrolytic nickel plating is preferred to reduce possibility that results in vertical and/or horizontal line defect due to the conductive particles from screw surface.

Ver. 1.0 Oct. 17, 2008 21 / 31



LGD Proposal for system cover design.(Appendix)



LGD Proposal for system cover design.

LGD Proposal for system cover design.

6. Reliability

Environment test condition

No.	Test Item	Conditions
1	High temperature storage test	Ta= 60° C, 240h
2	Low temperature storage test	Ta= -20° C, 240h
3	High temperature operation test	Ta= 50° C, 50%RH, 240h
4	Low temperature operation test	Ta= 0° C, 240h
5	Vibration test (non-operating)	Sine wave, 10 ~ 500 ~ 10Hz, 1.5G, 0.37oct/min 3 axis, 1hour/axis
6	Shock test (non-operating)	Half sine wave, 180G, 2ms one shock of each six faces(I.e. run 180G 2ms for all six faces)
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr

[{] Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

7. International Standards

7-1. Safety

a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc.,

Standard for Safety of Information Technology Equipment.

b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association,

Standard for Safety of Information Technology Equipment.

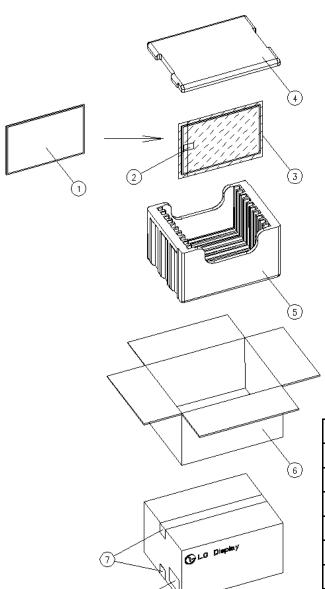
c) EN 60950-1:2001, First Edition,

European Committee for Electrotechnical Standardization(CENELEC)

European Standard for Safety of Information Technology Equipment.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

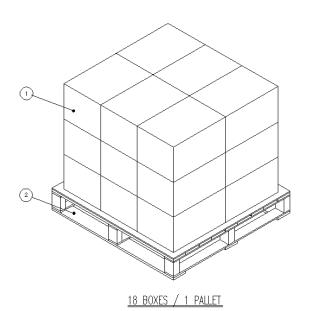


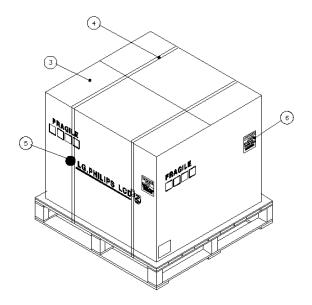
8. Packing

8-1. Packing Ass'y

1) Package quantity in one box: 20 pcs

2) Box Size : 480mm × 370mm × 299mm


1	LCM	
2	TAPE	OPP
3	BAG	LDPE
4	PACKING, TOP	EPS
(5)	PACKING, BOTTOM	EPS
6	вох	SWR4
7	TAPE	OPP
8	LABEL	ID



8-2. Pallet Ass'y

1) Box quantity in one pallet: 18 boxes

2) Package quantity in one pallet: 360 pcs

6	LABEL	ART
(5)	BAND, CLIP	STEEL
4	BAND, PACKING	P.P
(3)	ANGLE, PACKING	SW
(2)	PALLET	PLYWOOD
(1)	PACKING ASS'Y	

8-3. Designation of Lot Mark

a) Lot Mark

Α	В	С	D	Е	F	G	Н	I	J	К	L	М
---	---	---	---	---	---	---	---	---	---	---	---	---

A,B,C : SIZE(INCH) D : YEAR

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the
 - module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=± 200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes

longer.

- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or
 - electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.